
A System for Monitoring and Management of Computational Grids

Warren Smith

Computer Sciences Corporation

NASA Ames Research Center

Mail Stop T27A-2

Moffett Field, CA 94035

wwsmith@nas, nasa. gov

Abstract

As organizations begin to deploy large computational grids, it has become apparent that systems for

observation and control of the resources, services, and applications that make up such grids are needed.

Administrators must observe the operation of resources and services to ensure that they are operating

correctly and they must control the resources and services to ensure that their operation meets the needs

of users. Users are also interested in the operation of resources and services so that they can choose the

most appropriate ones to use. In this paper we describe a prototype system to monitor and manage

computational grids and describe the general software framework for control and observation in

distributed environments that it is based on.

Key words: monitoring, management, event service, computational grids, distributed computing

ICPP Areas: Network-Based and Cluster Computing,

OS and Resource Management

1. Introduction

A recent trend in government and academic research is the development and deployment of

computational grids [12, 18]. Computational grids are large-scale distributed systems that typically

consist of high-performance compute, storage, and networking resources. Examples of such

computational grids are the DOE Science Grid [3], the NSF Partnerships for Advanced Computing

Infrastructure [8, 9], and the NASA Information Power Grid [7, 23]. Most of the work to deploy these

grids is in developing the software services to allow users to execute applications on large and diverse

sets of distributed resources. These services include security, execution of remote applications, managing

remote data, access to information about resources and services, and so on. There are several toolkits that

provide these services, such as Globus [4, 17], Legion [6, 20], and Condor [2, 24].

NASA is building a computational grid called the Information Power Grid (IPG) that is based upon the

Globus toolkit. The IPG currently consists of resources and users at four NASA centers and our attempt

to deploy a production grid of this size has highlighted the need for systems to observe and control the

resources, services, and applications that make up such grids. We have found it difficult to ensure that the

many resources in the IPG and the grid services executing on those resources are performing correctly.

We have also found it cumbersome to perform administrative tasks such as adding grid users to our

resources. These observations have led to our development of a system to address these needs.

This paper provides an overview of our system for monitoring and managing a computational grid. It

allows administrators to observe the status of the resources and services that make up a Globus-based

computational grid, to perform actions to correct failures, and perform day-to-day administrative

functions. This system is constructed using the CODE toolkit [27] that provides a secure, scalable, and

extensible framework for making observations on remote computer systems, transmitting this

observational data to where it is needed, performing actions on remote computer systems, and analyzing

observational data to determine what actions should be taken. We begin our discussion with an overview

2

of the CODEframework.Section3 describesthe currentfunctionalityof our grid monitoringand

managementsystem.Section4 describesrelatedworkandSection5 summarizesourworkandpresents

futurework.

2. CODE Framework

We have developed a software framework for Control and Observation in Distributed Environments,

called CODE for obvious reasons [27]. We are using this framework to implement several useful grid

services, including our grid monitoring and management system. This section provides an overview of the

framework.

2.1. Architecture

We call CODE a framework because it contains the core code that is necessary for performing monitoring

and management. Users only need to add components to this framework and start the framework running.

For example, if a user wants to create a host monitor, she would create components to monitor processes,

files, network communications, and so on. The user would then add these components to the framework

and tell the framework to begin monitoring the host. This same process is used for adding components to

perform management actions. In fact, the typical process will be easier because CODE provides a set of

commonly used components for observing various properties and performing various actions and all a

user will have to do is select which of these components to use.

The CODE architecture is shown in Figure 1. The components that are shown with a solid outline are

those that are supplied by our framework, the components that are shown with a dashed outline are

provided by the user, and the gray boxes show the logical grouping of the components in our framework

into entities that may be on different hosts. The logical components of our framework are observers that

perform and report observations, actors that perform actions, managers that receive observations, make

decisions, and request actions, and a directory service for locating observers and actors. The next

subsections describe these components in more detail.

2.1.1. Observer

An observer is a process on a computer system that provides information that can be measured from the

system it is executing on. This could be information about the computer system, services or appfications

running on that computer system, or information that is not related to the computer system but that is

accessible from that computer system. Examples of this last type of information are scheduling queue

information from a front-end system and the current use of a local area network. An observer provides

information in the form of events'. An event has a type and contains data in the form of <name, value>

pairs. The values are typically of simple types such as string or integers, but can also be structures. An

observer allows a manager to query for a single event or to subscribe for a set of events. A subscription is

useful, for example, if a user wants to be notified of the load on a system periodically or notified

whenever some fault condition occurs. Access to events is controlled based on user identity and user

location on both a per-observer and a per-event type basis.

_ _ _"_ advertisesearch for V _ actor
observers and advertise

controllers observer

request
events

action

results

r_i Sensor __"_,,

M Manager _S_e_. ns°r

_anager __,,_,

Figure 1. Architecture of the CODE framework.

4

An observer consists of the following components:

• Sensor. A sensor is a component that is used to sense or measure some property. For example, a

CPU load sensor would measure the CPU load of a host, a network bandwidth sensor would

measure the available bandwidth between two hosts, or a convergence sensor would measure the

convergence rate of an application. A sensor is a passive component that performs measurements

only when the sensor manager requests them. We are providing a set of sensors as part of our

framework, but users will most likely need to implement sensors for their specific purposes.

• Sensor Manager. The sensor manager receives event requests or subscriptions from the observer

server interface, uses the appropriate sensor at the appropriate time to perform a measurement,

and sends the result of the measurement to the event producer interface in the form of an event.

• Event Producer Interface. The event producer interface provides an interface for observers to

access a distributed event service. This event service allows event subscriptions to be established

between producers and consumers, allows consumers to query for events from producers, and

allows producers to send events to consumers.

2.1.2. Actor

An actor is a process on a computer system that can be asked to perform actions. These actions are made

from the actor process and could affect local or remote resources, services, and applications. Access to

actions is controlled based on user identity and user location on both a per-actor and a per-action type

basis. An actor consists of the following components:

• Actuator. An actuator is a component that can be used to perform a specific action. For example,

an actuator can be used to start a daemon, submit a job to a scheduler, or change a variable in an

application An actuator is a passive component that performs actions only when the actuator

managerrequeststhem.Weareprovidinga setof actuatorsaspartof ourframework,butusers

will mostlikely needtoimplementactuatorsfortheirownspecificpurposes.

Actuator Manager.Theactuatormanagerreceivesrequeststo performactionsfromtheactor

interface,usestheappropriateactuatorto performtheaction,andsendstheresultsof theaction

backtotheactorinterface.

Actor Interface. The actor interface provides an interface to a distributed action service that

transmits requests for actions and their results. The purpose of the distributed action service is to

allow a director to request that an actor perform an action, and then transmit the results of the

action back to the director.

2.1.3. Manager

A manager is a process that asks observers for information, reasons upon that information, and asks actors

to take actions when the observations indicate that actions need to be taken. A manager consists of the

following components:

• Management Logic. The management logic receives events from the event consumer interface,

reasons upon this information to determine if any actions need to be taken, and then takes any

actions using the director interface. There are two ways to implement the management logic:

o Write C++ or Java code that contains a series of if and case statements, a state machine,

or whatever code is needed to decide what actions to perform.

o Use an expert system and write management rules. We are experimenting with using an

expert system to simplify the writing of managers. Without an expert system, the user

must write a (potentially large) series of conditional statements to examine events,

determine what they mean, and perform the appropriate actions. With an expert system, a

user defines a (hopefully smaller) set of rules and the expert system uses these rules to

reason on events and perform actions. We have incorporated the CLIPS expert system [1,

6

19] intoourframeworkfor thispurpose.Themanagement rules are written by the user

and tell the expert system how to operate.

Event Consumer Interface. The event consumer interface is used to request events from

observers and receive those events.

Director Interface. The director interface is used to request that actors perform actions and to

receive the results of those actions.

2.1.4. Directory Service

A common component of computational grids is a directory service or grid information service [16, 31].

For our purposes, a directory service is searchable distributed database that is accessed using the

Lightweight Directory Access Protocol (LDAP) [21, 22]. We use a directory service to store the

locations of observers and actors, describe what types of observations and actions they provide, and allow

managers to search for the observers and actors that provide the information or actions they are interested

in. The LDAP entries for our observers follow the schemas under development in the Grid Forum [28].

2.2. Implementation

We have implemented the CODE framework in C++ and in Java so that we can take advantage of the

features provided by object-oriented languages when writing modular and extensible code. The C++

implementation allows users to use CODE from C and C++ codes while the Java implementation can be

easily used by graphical user interfaces and web portals that are written in Java. In the future we may

wrap our C++ code so that it can be called from scientific applications written in Fortran.

One of the main design goals of our code is modularity so that the code can easily be extended and

modified. For example, the definition of Sensor and Actuator interfaces allows us to easily implement a

variety of sensors and actuators while the sensor manager and actuator manager components simply

understand the Sensor and Actuator interfaces but can manage any type of sensor or actuator. Similarly,

7

theeventconsumer,eventproducer,actor,anddirectorinterfacesin Figure1useTransportandEncoder

C++orJavainterfacesfortransmittingandencodingmessages.Thisallowsustohidetheimplementation

of varioustechniquesfor transmittingandencodingdata.At thispoint,theCODEframeworksupports

communicationusingTCP, UDP, and SSL. The SSL interface uses OpenSSL [10] and is compatible with

the certificates uses with the Globus toolkit. The CODE framework supports encoding of communication

messages with extension of the event protocol [29, 30] that is being defined in the Grid Forum

Performance Working Group [5]. This protocol encodes data using the eXtensible Markup Language

(XML) [14] and CODE uses the Xerces XML parsers to decode messages. Further, the format of the data'

CODE places in the directory service is compatible with the LDAP schemas [28] being defined in the

Grid Forum Performance Working Group.

As we mentioned previously, we are using the CLIPS expert system [19] in this project and we are

initially targeting the Linux, Solaris, and IRIX operating systems. We expect to port our code to other

flavors of Unix and to the Cygwin Unix-like environment for Microsoft Windows. The framework is

implemented in a multi-threaded manner using pthreads.

3. Grid Management System

As computational grids grow, it becomes very difficult to ensure the correct operation of the large number

of resources and services that make up a grid and to configure the services that are available on a grid. We

have developed a prototype Grid Management System (GMS) to assist with these tasks in a Globus-based

grid such as the NASA Information Power Grid. Figure 3 shows the high-level architecture of this

system.

Advertiseexistence

Findmanagers
andarchive

•Eventsdescribingcurrentstate
2.Actionrequests

1.Subscribe
2.Eventswhen

1.Subscribe
2.Eventswhenproblems

Figure2.Architectureof ourgridmonitoringandmanagementsystem.

Thisarchitectureshowsthefive majorcomponentsof oursystem.TheGlobustoolkit includesaservice

calledtheGlobusResourceAllocationManager(GRAM)thatallowsremoteusersto executeapplications

onacomputersystem.Ourmonitoringandmanagementarchitecturehasanagentoneachhostthathasa

GRAMserver.Thisagentobservestheoperationof thecomputersystemit isexecutingon,observesthe

operationof theGRAMserver,determinesif thereareanyproblemsthatshouldbemanaged,andtakes

actiontomanagetheseproblems.Thisagentalsoprovidesobservationaldatatoremoteagentsandallows

authorizedremoteagentstorequestactions.

A Globus-basedcomputationalgrid alsohasa Grid InformationService(GIS) that is a distributed

database,typicallyaccessedusingtheLightweightDirectoryAccessProtocol,thatcontainsinformation

aboutthe resources,users,services,andapplicationsthatarepartof thecomputationalgrid. A GIS

typicallyconsistsof multipleserversrunningonmultiplehosts.Our architectureincludesanagentto

monitortheoperationof theGIShostsandtheGISagents,to determineif thereareanyproblemswith

thesehostsandagents,andto takeactionsto attemptto addressanyproblems.Similarlyto theGRAM

agent,this agentprovidesobservationaldatato remoteagentsandallowsauthorizedremoteagentsto

requestactions.

9

Thethirdcomponentis astoreandforwardarchive.Theagentson theGISandGRAMhostssendevents

to thisarchivewhenthereareproblems.Thearchiveforwardseventsto anyinterestedmanagerandalso

storesthemsothattheycanberetrievedlater.Thefourthcomponentisadirectoryservicethatisusedby

theGRAMmanagementagents,GISmanagementagents,andthearchivetoadvertisetheirexistenceand

howtocontactthem.Thefinalcomponentin ourarchitectureisatransientmanagementGUIthatallowsa

gridadministratorto observethecurrentstateof thegridandbenotifiedwhenanyproblemsoccur.Many

of theseGUIscanbeactiveatanytime.Wewill describeeachof thesecomponentsin furtherdetailin the

nextsubsections.

3.1. GRAM Management Agent

Our grid management system has a monitoring and management agent running on each host that allows

remote users to execute applications through the Globus GRAM service. The purpose of this agent is to

ensure that the GRAM service is available to users, that the computer system it is associated with is

operating correctly, and that there is network connectivity to other GRAM hosts. The monitoring and

management agent contains a CODE observer, actor, and manager as shown in Figure 3. The observer is

used to monitor the following properties:

1. The network latency between the GRAM host and other GRAM hosts. These latencies are used in

this situation to detect any network problems. This latency information is also useful to users to

help them select which computer systems to execute an application on. The ping sensor measures

round trip times using the Unix ping command.

2. The available network bandwidth between the GRAM host and other GR.AzM hosts. These

bandwidth measurements are also used to detect network problems and help users select

resources. The IPerf [33] network measurement tool is used to make these measurements.

3. The CPU load is measured to determine if the computer system is overloaded and unusable. This

measurement is made using three different sensors. One sensor uses the Unix uptime program, a

10

secondusesthe PBS qstat command, and the third uses the LSF bjobs co_rnnand. The sensor that

is used depends on how access to the computer system is scheduled.

4. The memory statistics are measured using the Unix vmstat command, or similar commands, to

determine if the memory subsystem is overloaded.

5. The available disk space is measured using the Unix df command. The GRAM servers require

some minimal amount of disk space to operate.

6. The GRAM reporter. The IPG is currently running the Globus Metacomputing Directory Service

in classic mode. In that mode, a GRAM reporter daemon is executing on each GRAM host and

writing data into a remote LDAP server. A process sensor is used to observe the status of the

GRAM reporter to ensure that it is operating.

7. The GRAM log files. These log files contain information about usage of the GRAM service and

information about any problems that occur. These log flies are observed for any problems.

8. The GRAM grid map file. This file specifies which grid users can execute applications through

the GRAM service and also maps grid user identifiers to local Unix user identifiers. This

information is provided so that remote administrators can determine and modify which grid users

can use the GRAM service.

11

Networkresource 1I' atonc II aodwidt
i_i _ping "_ '!_ "_"'_""_ _ ¸_

System resources

Memory

reporter log
files

GRAM

gridmap
file

vmstat

sensor se___,; sensor . sensor

[email actuator gridmap actuator g_

Iperf mail II GRAMgridmapIfile

Figure 3. Monitoring and management components for a GRAM host.

The actor has actuators to perform the following actions:

1. Start and stop the Iperf server. An Iperf server is needed so that Iperf clients can connect and

perform Iperf experiments.

2. Send email. The email actuator is used to send email to administrators when a problem cannot be

handled automatically, but must be corrected immediately.

. Modify the GRAM gridmap file. This actuator is used by the remote management GUI so that

access to the GRAM service on the host can be given to or taken away from grid users and the

mapping of grid users to local user identities can be modified

4. Start, stop, or restart the GRAM reporter. If the GRAM reporter is not running or is not

responding it can be stopped or started.

The GRAM management agent also includes a CODE manager. At this time, this manager does not

receive any observations nor perform any actions. This approach assumes that the management of a grid

takes place in the management GUIs. In the future, this manager will receive observations and perform

12

actions so that management functionality will be offloaded to the GRAM manager and that the system

will be more scalable.

When this agent begins executing, it locates the store and forward archive (described further in Section

3.3) using the directory service and initiates subscriptions with the archive as the producer of events.

These subscriptions indicate that the GRAM management agent will send events to the archive when

problems occur. These problems include excessive CPU or memory use, failure of the GRAM reporter, or

problems in the GRAM log files. At any time, management GUIs can contact this agent to receive

information or request that actions be performed.

3.2. GIS Management Agent

We also wish to monitor and manage the LDAP servers that make up a Grid Information Service and the

hosts they execute on. This will allow us to ensure that a usable information service is available to our

users a very high percentage of the time. The monitoring and management agent for each GIS server

consists of an observer, an actor, and a manager as shown in Figure 4. The observer monitors the

following properties:

1. The network connectivity between the GIS hosts. LDAP servers typically refer searches for

information to other LDAP servers. There must therefore be network connectivity between the

servers. We use a ping sensor to determine if there is connectivity.

2. The CPU load of the host. ff the CPU load becomes too high, the LDAP server will be slow in

responding to requests.

3. The available memory of the host. Similarly, if the host is swapping memory pages to and from

disk, the performance of the LDAP server will degrade.

4. The available disk space. The databases and the log files for LDAP servers can become quite

large and we must ensure that there is enough disk space for them.

13

. The status of the LDAP server itself. This is measured in two ways. First, the existence of the

LDAP server process is observed. Second, the time to request a search and receive a reply is

measured.

NetworkLatency I CPU I Memory II Disk LDAPserver

ping sensor uptime vmstat df ps LDAP
sensor sensor sensor sensor search sensor

l mail 1[LDAPserver]

Figure 4. Monitoring and management components for a GIS host.

The actor that is part of a GIS management agent is relatively simple: It only has two actuators at the

current time. One actuator is used to send emails. The other actuator is used to start, stop, and restart the

LDAP server. In the future this actor will most likely support more complex functionality such as

compressing and moving log files to archival systems and querying the LDAP server for detailed usage

information. Many commercial LDAP servers provide usage information such as average queries per

second and average response time as LDAP entries that can be retrieved.

The GIS management agent also includes a CODE manager. At this time, this manager does not receive

any observations nor perform any actions. This approach assumes that the management of a grid takes

place in the management GUIs. In the future, this manager will receive observations and perform actions

so that management functionality will be offloaded to the GIS manager and that the system will be more

scalable.

When this agent begins executing, it locates the store and forward archive using the directory service and

initiates subscriptions with the archive as the producer of events. These subscriptions indicate that the GIS

14

managementagentwill sendeventsto the archivewhenproblemsoccur.Theseproblemsinclude

excessiveCPU,memory,or diskuse,lackof networkconnectivityto otherGIShosts,or failureof the

LDAPdaemon.At anytime,managementGUIscancontactthisagentto receiveinformationor request

thatactionsbeperformed.

3.3. Store and Forward Archive

The store and forward archive has several similar purposes. First, it forwards events that GRAM and GIS

monitoring agents generate when problems occur in real time to interested management GUIs. Second,

these events are archived so that management GUIs can obtain information about problems that have

occurred in the past. The architecture of this service is shown in Figure 5.

1. subscriptions from _-

management GUIs

2. events

I. subscriptions from

GRAM and GIS

monitoring daemons

2, events

Figure 5. Architecture of the store and forward archive.

The store and forward archive acts as an event consumer for events generated by GRAM and GIS

monitoring agents and acts as a producer of events for management GUIs. GRAM and GIS monitoring

agents use the directory service to find the store and forward archive and then they initiate a subscription

to the archive. The agents then send events to the archive whenever problems occur. Management GUIs

also find the archive using the directory service. They then subscribe for events from the archive. In the

simple case, the subscription indicates that the GUIs want to receive future events that the archive

receives. In the complex case, the subscription indicates that the GUI wants to receive events from the

archive.

15

We havenot seriouslyaddressedwhatprotocolsareneededto interactwith eventarchivessowehave

takenan ad-hocapproachfor thisprototype.Whena subscriptionis initiated,aneventfilter canbe

specified.This filter is usedto determinewhicheventsshouldbe sentto theeventconsumer.Our

approachis that if this filter containsa referenceto aneventtime stampin thepast,thentheevent

consumermustwanteventsfromthedatabase.For example,a subscriptionthatspecifiedafilter of all

eventsgeneratedafterJanuary1,2001,whenit is currentlyJanuaryof 2002,indicatesthateventsfrom

theeventdatabaseshouldbesent.In thiscase,thearchivewill first sendtheappropriateeventsfromthe

databaseto themanagementGUI.Thearchivewill thenforwardanyeventsthatit receivesin realtime

thatsatisfytheeventfilter. Thisforwardingof appropriateeventswill continueuntil thesubscriptionis

cancelled.

3.4. Directory Service

As described in Section 2.1.4, the observers and actors on the GRAM and GIS hosts register themselves

in the directory service so that managers can find them. The store and forward archive also registers itself

so that management GUIs, GRAM managers, and GIS managers can find it.

3.5. Management GUI

The final component of our grid monitoring and management system is a graphical user interface that is

used by grid administrators. Instances of this interface can be started and stopped at any time by multiple

administrators. This interface allows grid administrators to view the current status of a grid, be notified

when problems occur on the grid, examine problems that have occurred in the past, and perform grid

administrative tasks. Figure 6 shows the management GUI being used to show the status of a subset of the

resources on the NASA IPG. The boxes around each computer system icon indicate whether status

information from the machine has been received recently. The boxes are colored green when information

has been received recently, yellow when a few expected events have not been received, and red when

several expected events have not been received. The vertical progress bars next to each computer system

16

iconshowwhatfractionof theCPUsin thatcomputersystemisbeingused.Thelinesbetweencomputer

systemsindicatewhetherthemachinescanpingeachother.Theyarealsocoloredgreen,yellow,andred

to indicateif pingshavebeensuccessful.The progressbarsnext to the lines showthe fractionof

maximummeasuredbandwidth,in both directions,that was availableduring the last bandwidth

experiment.Thecomputersandnetworksto monitoralongwith iconselectionandplacementof all of the

graphicalcomponentsarestoredinaconfigurationfile thatis loadedwhentheGUIstarts.

Figure6.ManagementGUIdisplayingthestatusof asubsetoftheresourcesontheNASAIPG.

Asyoucanseefromthefigure,auserof themanagementGUIcanquicklyunderstandthestatusof some

of the majorIPG systemsandthe networksthat connectthem.Userscanalsoclick on anyof the

machinesornetworkconnectionsto displaymoredetailedinformationsuchasthatshowninFigure7.

17

' i_,_ _ _i_

_ _. i(1"7i i]!ii i'll!! I i _ i_

Figure 7. Detailed information about the load on the SGI Origin lomax.nas.nasa.gov and about the

connection between lomax.nas.nasa.gov (in California) and rogallo.larc.nasa.gov (in Virginia).

This interface can also be used to perform administrative tasks. At the current time, the interface allows

an administrator to add, remove, and modify users in the GRAM grid map files on the remote computer

systems. This interface provides several different ways to view user access. One display shows the grid

user to local user name mappings for a single computer system and allows modifications to these

mappings. Another display shows all of the computers that a grid user has access to and all of the local

user names the grid user maps to. An administrator can use this display to add or remove access to

computer systems and specify which local user name a grid user should map to.

4. Related Work

There are many existing systems for remote monitoring and management of networks and computer

systems. A few commercial systems are OpenView from Hewlett Packard, ManagementCenter from Sun,

Works2000 from Cisco, Unicenter Networks and Systems Management from Computer Associates,

Enterprise Console and related products from Tivoli, PATROL from BMC Software, and SiteAssure from

Platform Computing. These systems typically provide a wide range of monitoring and management

services for a variety of resources. There are several problems with using these tools in our current grid

environments. First, these products do have a cost associated with them, which may be difficult to afford

for all of the participants in a multi-institution research grid. Other problems are the lack of standards and

compatibility between products and the lack of portability because of the unavailability of source code.

18

Further,suchtoolsdonotsupportthegridsecurityinfrastructure.Thereareothersystemsthatarefreefor

noncommercialuseor opensource,butthesetoolstendto lackthefunctionalityof thecommercialtools

previouslymentionedandwouldneedto beextendedto managegrid services.Two examplesof such

tools areBig BrotherandScotty.Manyof thesetypesof tools arebasedon the SimpleNetwork

ManagementProtocol[32] that canprovideinformationon networkingandothertypesof resources,

services,andsoon.

Anotherareaof relatedworkisdistributedeventservices,oneof thecorecomponentsof ourframework.

Therehasalsobeena largeamountof work in thisarea.CORBAhasdefinedaneventserviceanda

notificationservice.The problemwith theseservicesis thatthey arepartof CORBA,which is not

commonlyusedin gridcomputing.TheJINI andJXTA frameworkshavesupportfor distributedevent

services,but theyonlysupporttheJavalanguage.Therearealsoresearchprojectsto developdistributed

eventservicessuchasSienna[11],Elvin [25],Echo[13],OIF [15], andXEvents[26].Manyof these

servicesarequiteusable,the mainadvantageof theonethatis partof our frameworkis that it will

continueto becompatiblewith thestandardsdefinedin theGridForum.Thebenefitof thisis thateach

implementationof distributedeventservicecomponentswill havepositivesandnegativesin termsof

programminglanguage,performance,and usability. Standardsallow users to select the best

implementationsfortheir needsandstill communicatewithotherimplementationsthatareoptimizedfor

differentpurposes.

5. Summary and Future Work

Our efforts to deploy a computational grid at NASA have demonstrated the need for tools to observe and

control the resources, services, and applications that make up grids. This has led to our development of

CODE which provides a secure, scalable, and extensible framework for making observations from remote

computer systems, transmitting this observational data to where it is needed, performing actions from

remote computer systems, and analyzing observational data to determine what actions should be taken.

19

A prototypeof ourframeworkis completeandwearecontinuingto improveit. In additionto thecore

framework,wehaveimplementedsensorsfor measuringvariouspropertiessuchasprocessstatus,file

characteristics,diskspace,CPUload,networkinterfacecharacteristics,andLDAPsearchperformance.

Wehavealsoimplementedafewsimpleactuators.Wehaveusedthis frameworkto developaprototype

grid managementsystemthatallowsadministratorsto observethecurrentstatusof theresourcesand

servicesthatmakeupagrid,to correctproblemswhentheyappear,andto performadministrativetasks

suchasmodifyingwhichgriduserscanaccesswhichcomputersystems.Thegrid managementsystem

alsorecordsfailuresthatoccursothattheycanbeexaminedata latertime.

In thefuturewewill continuetoimproveandextendourframeworkasit isusedfor newapplications.For

example,wewill addnewsensorsandactuators,wemayincorporatenewsecuritymechanismssuchas

Kerberos,andwewill refineanddevelopfunctionalitysuchaseventarchivesandchannels.Further,we

will trackthestandardsfor grideventservicesthatarebeingdevelopedin theGlobalGridForumandwill

strivetobecompatiblewiththosestandards.

Acknowledgments

We gratefully acknowledge the help of Abdul Waheed who participated in the early phases of this project

and of Jerry Yan who provided the initial motivation. We also wish to thank Dan Gunter, Ruth Aydt,

Brian Tiemey, Dennis Gannon, and Valerie Taylor for the many useful discussions we have had related to

this work both inside and outside of the Grid Forum. This work has been supported by the NASA HPCC

and CICT programs.

References

[1]

[21

[3]

[4]

"CLIPS: A Tool for Building Expert Systems," http://www.ghg.net/clips/CLIPS.html.

"Condor High Throughput Computing," http://www.cs.wisc.edu/condor/.

"The DOE Science Grid," http://www-itg.lbl.gov/Grid.

"The Globus Project," http://www.globus.org.

20

[5] "GridForumPerformanceWorkingGroup,"http://www-didc.lbl.gov/GridPerf/.

[6] "TheLegionProject,"http://www.cs.virginia.edu/-legion/.

[7] "TheNASAInformationPowerGrid,"http://www.ipg.nasa.gov.

[8] "TheNationalComputationalScienceAlliance,"

http://www.ncsa.uiuc.edu/access/index.alliance.html.

[9] "TheNationalPartnershipforAdvancedComputingInfrastructure,"http://www.npaci.edu/.

[10] "TheOpenSSLProject,"http://www.openssl.org.

[11] A. Carzaniga,D.S.Rosenblum,andA.L. Wolf, "AchievingScalabilityandExpressivenessin an

Internet-ScaleEventNotificationService."In Proceedingsof theNinteenthACMSymposiumon

Principlesof DistributedComputing,Portland,OR,2000.

[12] C.CatlettandL. Smarr,"Metacomputing,"in Communications of the ACM, vol. 35, 1992, pp. 44-

52.

[13] G. Eisenhauer, F. Bustamante, and K. Schwan, "Event Services for High Performance

Computing." In Proceedings of the 9th IEEE International Symposium on High Performance

Distributed Computing, 2000.

[14] D. Fallside, "XML Schema Part 0: Primer," http:l/www.w3.org/TRlxmlschema-O/.

[15] R.E. Filman and D. D. Lee, "Managing Distributed Systems with Smart Subscriptions." In

Proceedings of the International Conference on Parallel and Distributed Processing Techniques

and Applications, Las Vegas, NV, 2000.

[16] S. Fitzgerald, I. Foster, C. Kesselman, G. v. Laszewski, W. Smith, and S. Tuecke, "A Directory

Service for Configuring High-Performance Distributed Computations." In Proceedings of the 6th

IEEE International Symposium on High Performance Distributed Computing, 1997.

[17] I. Foster and C. Kesselman, "Globus: A Metacomputing Infrastructure Toolkit," International

Journal of Supercomputing Applications, vol. 11, pp. 115-128, 1997.

[18] I. Foster and C. Kesselman, "The Grid: Blueprint for a New Computing Infrastructure,".: Morgan

Kauffmann, 1999.

21

[19] J.Giarratano,"TheCLIPSUser'sGuide,".,1998.

[20] A. Grimshaw,W. Wulf, J. French,A. Weaver,andP.R. Jr., "Legion:TheNextLogicalStep

TowardA NationwideVirtual Computer,"Departmentof ComputerScience,Universityof

VirginiaCS-94-21,June,19941994.

[21] T.HowesandM. Smith,LDAP: Programming Directory-Enabled Applications with Lightweight

Directory Access Protocol: Macmillan Technical Publishing, 1997.

[22] T. Howes, M. Smith, and G. Good, Understanding and Deploying LDAP Directory Services:

MacMillan Technical Publishing, 1999.

[23] W. Johnston, D. Gannon, and B. Nitzberg, "Grids as Production Computing Environments: The

Engineering Aspects of NASA's Information Power Grid." In Proceedings of the 8th IEEE

International Symposium on High Performance Distributed Computing, 1999.

[24] M. Litzkow and M. Livny, "Experience with the Condor Distributed Batch System." In

Proceedings of the IEEE Workshop on Experimental Distributed Systems, 1990.

[25] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps, "Content Based Routing with

Elvin4." In Proceedings of the AUUG2k, Canberra, Australia, 2000.

[26] A. Slominski, M. Govindaraju, D. Gannon, and R. Bramley, "SoapRMI Events: Design and

Implementation," Computer Science Department, Indiana University TR549, May 2001.

[27] W. Smith, "A Framework for Control and Observation in Distributed Environments," NASA

Advanced Supercomputing Division, NASA Ames Research Center, Moffett Field, CA NAS-01-

006, June 2001.

[28] W. Smith and D. Gunter, "Simple LDAP Schemas for Grid Monitoring," The Global Grid Forum

GWD-Perf- 13-1,2001.

[29] W. Smith, D. Gunter, and D. Quesnel, "A Simple XML Producer-Consumer Protocol," The

Global Grid Forum GWD-Perf-8-2, 2001.

22

[30]

[31]

[32]

[33]

W. Smith,D. Gunter,andD. Quesnel,"An XML-BasedProtocolfor DistributedEventServices."

In Proceedingsof theThe2001InternationalConferenceonParallelandDistributedProcessing

TechniquesandApplications,LasVegas,NV, 2001.

W. Smith,A. Waheed,D.Meyers,andJ.Yan,"AnEvaluationof AlternativeDesignsfor aGrid

InformationService."In Proceedingsof the 9th IEEE InternationalSymposiumon High

PerformanceDistributedComputing,2000.

W. Stallings,SNMP, SNMPv2, and CMIP: The Practical Guide to Network-Management

Standards. Reading, Massachusetts: Addison-Wesley, 1993.

A. Tirumala and J. Ferguson, "Iperf Version 1.2," http://dast.nlanr.net/Projects/Iperf/.

23

